Ein internationales Forschungsteam unter der Leitung von Helmholtz Munich hat erstmals detailliert gezeigt, wie sich die räumliche Organisation des Erbguts im Zellkern früher Embryonen in den ersten Stunden nach der Befruchtung entwickelt.
Überraschenderweise zeigen Embryonen eine hohe Flexibilität bei der Korrektur von Störungen in diesem Prozess. Die in Cell veröffentlichte Studie (DOI: 10.1016/j.cell.2025.03.044) zeigt, dass nicht ein einzelner Hauptregulator diese Kernorganisation steuert. Stattdessen sorgen mehrere redundante Mechanismen für eine robuste und anpassungsfähige Kernarchitektur und ermöglichen es Embryonen, Fehler in der anfänglichen Organisation ihres Zellkerns zu korrigieren.
Um die Mechanismen dieser Reorganisation zu entschlüsseln, führten die Forschenden ein sogenanntes Störungs-Screening durch. Dabei veränderten sie gezielt epigenetische Faktoren in frühen Mausembryonen, um deren Einfluss auf die Kernorganisation zu analysieren. Zur Kartierung der epigenetischen Veränderungen nutzten die Forschenden modernste molekularbiologische Techniken. Die Analysen deckten mehrere redundante regulatorische Mechanismen auf, die an der Kernorganisation beteiligt sind.
Darüber hinaus ergaben die Experimente, dass – entgegen bisheriger Annahmen – die Genaktivität nicht streng von der räumlichen Position im Zellkern bestimmt wird. Manche Gene blieben aktiv, obwohl sie sich in eine Region des Zellkerns verschoben, die traditionell als inaktiv gilt, während eine ähnliche Verlagerung in anderen Fällen zu einer drastischen Reduktion der Genexpression führte. Noch überraschender war die Erkenntnis, dass frühe Embryonen Störungen in der Kernorganisation selbst korrigieren können. War die Kernorganisation vor der ersten Zellteilung gestört, konnte sie während des zweiten Zellzyklus wiederhergestellt werden. Dies deutet darauf hin, dass frühe Embryonen nicht nur widerstandsfähig sind, sondern auch Mechanismen besitzen, um Fehler in ihrer anfänglichen Kernorganisation zu kompensieren.
Die Forschenden entdeckten, dass dieser Prozess durch epigenetische Markierungen reguliert wird, die von der mütterlichen Eizelle vererbt werden. Falls diese mütterlichen Signale gestört sind, kann der Embryo allerdings alternative epigenetische Programme aktivieren, um die korrekte Kernorganisation dennoch wiederherzustellen – selbst, wenn diese Programme möglicherweise nicht von der Mutter stammen. Dies zeigt, dass Embryonen unterschiedliche Ausgangspunkte für ihre Entwicklung nutzen können, um Fehlentwicklungen zu verhindern.
Quelle: Informationsdienst Wissenschaft